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Abstract
We derive the Ginzburg–Landau theory of unconventional singlet super-
conductors in the presence of a Zeeman field and impurities, in order to examine
the resulting Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phases. We show
that the behaviour of the FFLO phases in unconventional superconductors in
the presence of impurities is qualitatively different from that found for s-wave
superconductors.

1. Introduction

In 1964 Fulde and Ferrell [1] and Larkin and Ovchinnikov [2] demonstrated that a super-
conducting state with an order parameter that oscillates spatially may be stabilized by a
large applied magnetic field or an internal exchange field. Such a Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) state was subsequently shown to be readily destroyed by impurities [3]
and has never been observed in conventional low-Tc superconductors. The question of
observing an FFLO phase in an unconventional superconductor has only been addressed more
recently. In particular organic, heavy-fermion, and high-Tc superconductors appear to be
promising candidates for exhibiting such states [4–22]. These new classes of superconductors
are believed to provide conditions that are favourable to the formation of FFLO states, because
many of them are: (i) strongly type II superconductors, so the upper critical field Hc2

can easily approach the Pauli paramagnetic limit; and (ii) layered compounds, so, when a
magnetic field is applied parallel to the conducting plane, the orbital effect is minimal, and
the Zeeman effect (which is the driving force for the formation of FFLO states) dominates
the physics. Indeed, some experimental indications of the existence of the FFLO state have
been reported [4, 11, 13, 19]. All of these materials have been argued to be unconventional
superconductors and in this way differ from the case originally considered by Fulde, Ferrell,
Larkin, and Ovchinnikov. Motivated by this possibility we have derived the Ginzburg–Landau
(GL) free-energy functional for unconventional superconductors in the presence of Zeeman
splitting and an impurity potential, and use it to study the possible FFLO phases. This is
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not a commonly used approach for examining the FFLO phase. To our knowledge it has
previously only been discussed in the context of clean s-wave superconductors by Buzdin
and Kachkachi [17]. However, as we show below, it represents a very powerful approach for
studying the FFLO phase since the simplicity of the resulting theory allows complexities such
as non-s-wave pairing, impurities, and even strong-coupling effects to be included (though this
is not done here). The stability of the various superconducting phases and, to some degree, the
topology of the superconducting phase diagram can be examined within this approach. These
results help to clarify the nature of the FFLO phase and can also be used as a guide for a theory
extended to all temperatures and magnetic fields.

Using a functional integral formalism, we derive the GL free-energy functional for single-
component singlet superconductors in the presence of impurities and Zeeman fields in the
weak-coupling limit. The resultant GL free energy is valid near the second-order normal-
to-superconductor phase transition line in the (T ,H) plane. This line will be denoted by
[T ,H(T )]. The resulting instability to the FFLO phase appears readily within this approach
due to the change of sign of the gradient term κ|∇�|2 along the line [T ,H(T )]. The point
at which the coefficient κ changes sign (denoted as [T ∗, H(T ∗)]) is a tricritical point. At
this point the normal, uniform superconducting, and FFLO phases all meet (see figure 1). An
intriguing feature of the weak-coupling clean limit is that the fourth-order uniform term β|�|4
also changes sign at the tricritical point. It is this term that determines the form of the FFLO
phase. In particular, for a given momentum q the two solutions � ∼ eiq·r and � ∼ e−iq·r

are degenerate superconducting states at the normal-to-superconductor instability. The fourth-
order term breaks this degeneracy and selects either a cos(q · r) (LO phase) or an eiq·r (FF
phase) type of order parameter. Since the magnitude of the order parameter is spatially uniform
for the FF phase and vanishes at lines in real space for an LO phase, a negative β stabilizes the
LO phase. Note that the complete GL free energy in this case requires inclusion of terms of
the form |�|6 and |�|2|∇�|2 to be bounded. These considerations have appeared in the work
of Buzdin and Kachkachi [17] for conventional s-wave superconductors in the clean limit and
are shown here to remain true for unconventional superconductors.

Figure 1. The qualitative phase diagram for clean superconductors. The cos q ·r form of the order
parameter is only valid near the normal-to-FFLO transition line. The direction of q in the FFLO
phase may also depend upon temperature (see for example reference [18]).

We further extend these considerations to include the effect of impurities. It is found
that impurities suppress the FFLO phase for both conventional and unconventional super-
conductors. However, we also find that impurities lead to qualitatively different (T ,H) phase
diagrams for conventional (s-wave) and unconventional (non-s-wave) superconductors (see
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figures 2 and 3). This difference is most easily understood by looking at the coefficients κ andβ.
For conventional superconductors it is known that β is unchanged by non-magnetic impurities
(this is a consequence of Anderson’s theorem) while κ is changed. The point on the [T ,H(T )]
line at which κ changes sign is pushed to lower temperatures with impurities (which illustrates
that impurities suppress the FFLO phase). Consequently, the normal-to-FFLO transition in
the clean limit is replaced by a first-order normal-to-uniform superconducting transition. For
unconventional superconductors, impurities change both the κ- and β-coefficients, due to the
inapplicability of Anderson’s theorem. It is found that the points on the [T ,H(T )] line for
which κ = 0 and β = 0 move to lower temperatures with increasing impurity concentration.
The point β = 0 is more rapidly suppressed than the point κ = 0. This implies that the
initial instability to the FFLO phase is to an FF phase (� ∼ eiq·r) as opposed to the LO phase
(� ∼ cos q · r) that is typically encountered. We are not aware of any other report on the
stability of an FF phase. The results here also indicate that the first-order normal-to-uniform
superconductor phase transition does not occur for unconventional superconductors.

Figure 2. The qualitative phase diagram for conventional
superconductors with non-magnetic impurities.

Figure 3. The qualitative phase diagram for unconven-
tional superconductors with non-magnetic impurities.

2. Ginzburg–Landau theory

Consider the Hamiltonian

Ĥ =
∫

dx
∑
σ

�†
σ (x)[T (x) + U(x) + 2σµB]�σ(x) + V̂int (1)

where T (x) represents the kinetic energy and takes the form −∇2/(2m) − εF for a free elec-
tron and more generally takes the form T (x) = ε(k = i∇) for a band with dispersion ε(k)

measured from the Fermi energy εF , U(x) is the disorder potential and satisfies 〈U(x)〉 = 0
and 〈U(x)U(x′)〉 = niWδd(x − x′), ni is the concentration of impurities, and µ = gµB/2 is
the magnetic moment of the electron. We will primarily be interested in singlet pairing in the
ground state; so we neglect interactions between electrons with the same spin. The pairing
interaction (V̂int ) is taken to have the separable form

V̂int = −V0

∑
k,k′,q

fkf
∗
k′c

†
k+q/2,↑c

†
−k+q/2,↓c

†
−k′+q/2,↓c

†
k+q/2,↑. (2)

f (k) describes the gap dependence on the Fermi surface and is defined to satisfy
∑

k |fk|2 = 1.
It is also understood that a cut-off exists in momentum space such that only electrons that are
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close enough to the Fermi surface interact with each other. After taking the appropriate Fourier
transforms the interaction in real space takes the form

V̂int = −V0

∫
dx dx′ dR f (x)f ∗(x′)�†

↑

(
R +

x

2

)
�

†
↓

(
R − x

2

)

× �↓

(
R − x′

2

)
�↑

(
R +

x′

2

)
(3)

where

f (x) = 1√
V

∑
k

fkeik·x

and V is the volume of the system (note that this definition of f (x) implies
∫

dx |f (x)|2 = 1).
One may also describe the system using an Euclidean action in terms of Grassman variables:

S[�,�] = S0[�,�] −
∫ β

0
dτ V0

∫
dx dx′ dR f (x)f ∗(x′)

× �↑

(
R +

x

2
, τ

)
�↓

(
R − x

2
, τ

)
�↓

(
R − x′

2
, τ

)
�↑

(
R +

x′

2
, τ

)
(4)

where S0 is the action for free electrons, and τ is the imaginary time. The partition function is

Z =
∫

D� D� e−S[�,�]. (5)

We now decouple the quartic term in S by introducing a pair of Hubbard–Stratonovich fields
�(R, τ ) and �(R, τ ), which will become the superconducting order parameter:

S[�,�,�,�] = S0 −
∫ β

0
dτ

∫
dR dr

[
�(R, τ )f (r)�↑

(
R +

r

2
, τ

)
�↓

(
R − r

2
, τ

)

+ �(R, τ )f ∗(r)�↓

(
R − r

2
, τ

)
�↑

(
R +

r

2
, τ

)]

+
∫ β

0
dτ

∫
dR

|�(R, τ )|2
V0

. (6)

With this decoupling, the fermionic action becomes quadratic, and can be integrated out, after
which we obtain an effective action in terms of the order parameter �(R, τ ):

Se[�,�] =
∫ β

0
dτ dR

|�(R, τ )|2
V0

− logZ[�,�] (7)

where

Z[�,�] =
∫

D� D� exp

{
−S0[�,�] +

∫ β

0
dτ

∫
dR dr

[
�(R, τ )f (r)

× �↑

(
R +

r

2
, τ

)
�↓

(
R − r

2
, τ

)

+ �(R, τ )f ∗(r)�↓

(
R − r

2
, τ

)
�↑

(
R +

r

2
, τ

)]}
. (8)

The mean-field solution corresponds to the saddle point of Se[�,�]:

δSe[�,�]

δ�(R)

∣∣∣∣
�=�s

= �s(R)

V0
− δ logZ[�,�]

δ�(R)

∣∣∣∣
�=�s

= �s(R)

V0
−

∫
dr f (r)

〈
�↓

(
R − r

2

)
�↑

(
R +

r

2

)〉
�s

= 0 (9)
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where 〈 〉�s
stands for quantum and thermal averaging in the presence of the pairing field

�s(R). Here we have assumed a static saddle point, so �s has no τ -dependence.
The functional integral formalism can be used to derive the effective Ginzburg–Landau

free energy, in the vicinity of the second-order normal-to-uniform superconductor transition
line [T ,H(T )]. This has been done for the short-range attractive interactions (that give rise to
s-wave pairing) [23]. Our starting point is the effective action, equation (7). Near [T ,H(T )],
we may make two simplifications: (i) we may neglect the τ -dependence of � as we expect the
thermal fluctuations to dominate the quantum fluctuations; (ii) we may expand Se in powers
of �. The quadratic terms take the form

S(2)
e [�,�] = β

∫
dR

|�(R)|2
V0

−
∫

dR dR′ Q(R,R′)�(R)�(R′) (10)

where

Q(R,R′) = δ2 logZ

δ�(R) δ�(R′)

∣∣∣∣
�=0

=
∫ β

0
dτ1

∫ β

0
dτ2

∫
dr dr′ f (r)f ∗(r′)

×
〈
�↓

(
R − r

2
, τ2

)
�↑

(
R +

r

2
, τ2

)
�↑

(
R′ +

r′

2
, τ1

)
�↓

(
R′ − r′

2
, τ1

)〉
c

=
∫ β

0
dτ1

∫ β

0
dτ2

∫
dr dr′ f (r)f ∗(r′)

× G0,↓

(
R − r

2
,R′ − r′

2
; τ2 − τ1

)
G0,↑

(
R +

r

2
,R′ +

r′

2
; τ2 − τ1

)

=
∑
iωn

∫
dr dr′ f (r)f ∗(r′)

× G0,↓

(
R − r

2
,R′ − r′

2
; iωn

)
G0,↑

(
R +

r

2
,R′ +

r′

2
; −iωn

)
. (11)

The quartic term takes the form

S(4)
e [�,�] = −1

2

∫
dR1 dR2 dR3 dR4 R(R1,R2,R3,R4)�(R1)�(R2)�(R3)�(R4)

(12)

where

R(R1,R2,R3,R4) =
∫ β

0
dτ1 dτ2 dτ3 dτ4

∫
dr1 dr2 dr3 dr4 f (r1)f

∗(r2)f (r3)f
∗(r4)

× G0,↑

(
R4 − r4

2
,R1 − r1

2
; τ4 − τ1

)
G0,↓

(
R4 +

r4

2
,R3 +

r3

2
; τ4 − τ3

)

× G0,↑

(
R2 − r2

2
,R3 − r3

2
; τ2 − τ3

)
G0,↓

(
R2 +

r2

2
,R1 +

r1

2
; τ2 − τ1

)
.

(13)

We will need the sixth-order term as well, whose explicit expression (that involves the product
of six Green’s functions) is not included here. The above quadratic and quartic terms apply
for a particular impurity configuration. We will average over impurity distributions when
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calculating the form of the free energy. We assume that the gap function that appears above
corresponds to the gap function averaged over impurities and that we can ignore impurity-
induced correlations in the gap function and between the gap function and the single-particle
Green’s functions. To proceed further, the impurity-averaged correlation functions 〈GG〉 and
〈GGGG〉 must be calculated. We determine these within the Born approximation and much
of the derivation follows that of Werthamer for conventional s-wave superconductors [24].

The impurity-averaged normal Green’s functions are

G0,σ (k; iωn) = 1
/(

iωn + i
1

2τ
sgn ωn − εk + 2σµB

)
(14)

where 1/(2τ) = & = πniWN(0) and σ is 1/2 (−1/2) for ↑ (↓). Consider the average

Q(x1,y1; x2,y2; iωn) = 〈G0,↓(x1,y1; iωn)G0,↑(x2,y2; −iωn)〉imp

= Q(x1 − y2,y1 − y2,x2 − y2; iωn)

due to translational invariance. Summing the usual ladder diagrams shown in [24] gives the
self-consistent solution

Q(R1,R2,R3; iωn) = G0,↓(R1 − R2; iωn)G0,↑(R3; −iωn)

+ niW

∫
dR G0,↓(R1 − R; iωn)Q(0,R2 − R,R3 − R; iωn)

× G0,↑(R; −iωn). (15)

This can be solved after taking the Fourier transforms with respect to R1,R2, and R3:

Q(k1,k2,k3; iωn) = G0,↑(k1; iωn)G0,↓(k2; −iωn)

×
[
V δk1,−k2 +

niWG0,↑(k3; iωn)G0,↓(k1 + k2 + k3; −iωn)

1 − (niW/V )
∑

k G0,↑(k; iωn)G0,↓(k + k2 + k3; −iωn)

]
.

(16)

Substituting this result into equation (11) gives

Q(R,R′) = 1

V

∑
q

eiq·(R−R′)
∑

k,k′,iωn

fkf
∗
k′G0,↑

(
k +

q

2
; iωn

)
G0,↓

(
k′ − q

2
; −iωn

)

×
[
V δk,k′ +

niWG0,↑(k′ + q/2; iωn)G0,↓(k − q/2; −iωn)

1 − (niW/V )
∑

p G0,↑(p − q/2; iωn)G0,↓(p + q/2; −iωn)

]
.

(17)

Note that the form of the vertex corrections found here is not the same as for conventional
s-wave superconductors. In particular, when deriving the terms up to second order in the
gradients, the vertex corrections vanish for unconventional superconductors. However, for
higher-order gradient terms, the vertex corrections are not zero.

The impurity-averaged correlation function that appears in δS4 is less straightforward to
calculate. For the terms in the free energy that are fourth order in the order parameter, we
consider only up to second order in the gradients of the order parameter. In this case the
non-zero diagrams have the same form as those that contribute in the s-wave case [24].

After performing the appropriate Taylor series expansions, the following GL free energy
for hexagonal and square lattices is found (this expression is valid only for non-s-wave super-
conductors (〈fk〉 = 0)):

F = α|�|2 + β|�|4 + κ|∇�|2 + δ|∇2�|2 + µ|�|2|∇�|2 + η[(�∗)2(∇�)2 + (�)2(∇�∗)2]

+ ν|�|6 + δ̃|(∇2
x − ∇2

y )�|2 (18)
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in which the coefficients are

α = −N(0)[ln(T 0
c /T ) + πK1 − πK1(& = 0, B = 0)] (19)

β = πN(0)

4
(〈|f (k)|4〉K3 − &K4) (20)

κ = πN(0)〈v2
⊥(k)|f (k)|2〉

8
K3 (21)

δ = −πN(0)〈|f (k)|2v4
⊥(k)〉

64
K5 (22)

µ = 8η = −πN(0)〈v2
⊥(k)|f (k)|4〉

4

(
K5 − &

〈|f (k)|4〉K6

)
(23)

δ̃ = πN(0)〈|f (k)|2(v2
x(k) − v2

y(k))
2〉

64
(K5 + &K̃6) (24)

ν = −πN(0)

8

(
〈|f (k)|6〉K5 − 3&〈|f (k|4〉

2
K6 + 2&2K7

)
(25)

where

Kn = (2T )1−n 1

πn
Re

( ∞∑
ν=0

1

(ν + z)n

)
(26)

and where

z = 1

2
− i

µB

2πT
+

&

2πT
K̃6 = (2T )−5 1

π6
Re

[ ∞∑
ν=0

1

(ν + z)5(ν + 1
2 − iµB/{2πT })

]
.

The δ̃-term does not appear for a hexagonal lattice. For an orthorhombic lattice the following
terms also appear in the free energy:

δF = κ̃(|∇x�|2 − |∇y�|2) + µ̃|�|2(|∇x�|2 − |∇y�|2)
+ η̃

[
((∇x�)2 − (∇yψ)2)(�∗)2 + ((∇x�

∗)2 − (∇y�
∗)2)(�)2

]
+ δ2

{
[(∇2

x + ∇2
y )�][(∇2

x − ∇2
y )�]∗ + [(∇2

x + ∇2
y )�]∗[(∇2

x − ∇2
y )�]

}
. (27)

The coefficients κ̃ , µ̃, and η̃ are given respectively by κ , µ, η, with v2
⊥ replaced by (v2

x − v2
y),

and the coefficient δ2 is given by δ with v4
⊥ replaced by v2

⊥(v
2
x − v2

y). The free energy is the
main result of this paper.

3. s-wave superconductors

Here we review the known results concerning the FFLO phase for a conventional s-wave
superconductor and show how it arises from the free energy. As mentioned in the introduction,
the only two coefficients that are required to study the instability from the normal phase
into the FFLO phase near the tricritical point are κ and β. For a conventional s-wave super-
conductor (for which fk is a constant) these can easily be determined by following Werthamer’s
derivation [24] (note that the above free energy does not apply here since 〈fk〉 �= 0):

κs = πN(0)〈v2
⊥(k)〉

8
K̃3 (28)

β = πN(0)

4
K3(& = 0) (29)
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where

K̃3 = (2T )−2 1

π3
Re

[ ∞∑
ν=0

1

(ν + 1
2 − iµB/{2πT })2(ν + 1

2 − iµB/{2πT } + &/{2πT })

]
.

(30)

The coefficient β does not depend upon the impurity concentration; this is in agreement
with Anderson’s theorem. The second-order normal-to-uniform superconductor phase line
[T ,H(T )] is given by α(& = 0) = 0 and is shown in figure 4. Note that once κ < 0 or
β < 0, the phase line [T ,H(T )] no longer denotes the true normal-to-superconductor phase
line. Numerical evaluation of κs and β shows that in the clean limit both κ and β vanish at
T = 0.56Tc. This point is the tricritical point. The phase diagram is shown in figure 1. When
impurities are added, numerical evaluations show that κ vanishes at a lower temperature than
that at which β vanishes (note that the presence of impurities does not change β). In this
case there is a first-order superconducting transition to a homogeneous phase for T � 0.56Tc.
Once β < 0, then the normal-to-superconductor instability line is no longer given by figure 4.
To determine whether there exists an FFLO phase for some arbitrary impurity concentration
requires a calculation that goes beyond the GL free energy presented here. This is because
the GL theory is only valid close to the transition at T = 0.56Tc (note that the GL theory
can be used to study the transition into the FFLO phase if the impurity concentration is small
enough). The calculations of Bulaevskii and Guseinov for layered superconductors indicate
that there is no FFLO phase at T = 0 when &/Tc > 0.6 [25]. The qualitative phase diagram
in the presence of impurities is shown in figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc

0.0

0.5

1.0

1.5

µ Β
Β

/Τ
c

Figure 4. The second-order normal-to-uniform superconducting phase boundary for s-wave
superconductors. This line defines [T ,H(T )] when there are no impurities present. This is the
boundary on which κ and β are determined. Note that for T � 0.56Tc this phase boundary will
not coincide with the actual normal-to-superconducting phase boundary (the transition will either
be to a non-uniform (FFLO) phase or will be first order).
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4. Unconventional superconductors

The last section demonstrated that for T near 0.56Tc the GL theory accurately reproduced
the phase diagram for conventional superconductors. Here we apply the same approach
to unconventional superconductors where it turns out that the GL theory is more powerful.
This is the case because the transition from the normal state to the superconducting state is
second order for all fields and impurity concentrations for unconventional superconductors.
For conventional superconductors this transition is sometimes first order, which limits the
applicability of GL theory. For example, the GL theory for unconventional superconductors
can give the maximum impurity concentration that allows the FFLO phase to exist; it was
not able to do this for s-wave superconductors. As a concrete example we study a d-wave
superconductor (fk ∝ k2

x − k2
y) with a cylindrical Fermi surface. Choosing some other fk

will not change the qualitative form of the phase diagrams (provided that 〈fk〉 = 0). The
clean-limit phase diagram is qualitatively the same as that for the s-wave case. In fact, the
clean-limit theory indicates that the FFLO phase appears for T < 0.56Tc independently of
the order parameter symmetry. When impurities are added, the main conclusion is that κ

vanishes at a higher temperature than that at which β vanishes when these quantities are
evaluated on the phase boundary [T ,H(T )] (see figure 5 and figure 6 for the temperature
evolutions of κ and β). This implies that there is no first-order transition from the normal
state to a uniform superconducting state, but rather a second-order transition into an FFLO
phase. The temperature at which κ = 0 gives the maximum temperature that allows the
existence of the FFLO phase (we call this temperature TF ). This is in sharp contrast to
what happens in s-wave superconductors, where a first-order phase boundary separates the
normal and uniform superconducting state for temperatures just above the point at which β

0.0 0.5 1.0
T/Tc

0.0

0.5

1.0

1.5

2.0

κ(
Τ)

/κ
(Τ

c)

Figure 5. κ(T )/κ(Tc) on the phase line [T ,H(T )] for d-wave superconductors. The curves from
top to bottom at T = Tc correspond to &/Tc = 0.6, &/Tc = 0.3, and &/Tc = 0.0 respectively.
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Figure 6. β(T )/β(Tc) on the phase line [T ,H(T )] for d-wave superconductors. The curves from
top to bottom at T = Tc correspond to &/Tc = 0.6, &/Tc = 0.3, and &/Tc = 0.0 respectively.

vanishes. Figure 7 shows how TF varies as the impurity concentration is increased (note that
impurities also suppress Tc; hence we plot TF /Tc as a function of Tc/Tc0 since the latter is
an experimentally measurable quantity). This figure indicates that the FFLO phase survives a
considerable impurity concentration; only for &/Tc � 0.6 does the FFLO phase cease to exist
(superconductivity is destroyed when &/Tc � 0.88).
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T
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c

1.00.90.80.70.60.5
Tc/Tc0

Figure 7. The maximum temperature (TF ) for which the FFLO phase can exist as a function of
the transition temperature (which is suppressed by impurities).

The structure of the FFLO phase can also be addressed within the GL theory in the
neighbourhood of the tricritical point (given by κ = 0 on the phase line [T ,H(T )]). To do
this we compare the free energy for three different phases: (1) �1 = �0 (the uniform phase),
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(2) �2 = �0eiq·r (the FF phase), and (3) �3 = �0 cos(q · r) (the LO phase). We note here
that terms O(�6) do not need to be included in the calculations done here because the terms
O(�4) are positive. Also the minimization with respect to the orientation of q for �2 and �3

implies that q is oriented along the nodes for all impurity concentrations. This agrees with
earlier calculations that go beyond the GL theory in the clean limit [15,18]. After minimizing
with respect to q the resulting free energies are

F1 = α|�|2 + β|�|4 (31)

F2 =
(
α − κ2

4δ

)
|�|2 + β2|�|4 (32)

F3 =
(
α − κ2

4δ

)
|�|2 + β3|�|4 (33)

where

β2 = β − 3κη

δ
β3 = 3

2
β − 5κη

2δ
(where we have used µ = 8η). It is clear that when κ = 0, F1 = F2 < F3 which implies
that α = 0 and κ = 0 gives the tricritical point where the normal, uniform superconducting,
and FF superconducting phases meet. Note that the FF phase is stable while the LO phase is
not at the tricritical point, since β > 0 (the FF phase is never stable in the s-wave case). For
temperatures below that of the tricritical point the phase transition from the normal phase into
the FFLO phase is given by α = κ2/(4δ). Intriguingly, along this phase line, β changes sign.
This implies a first-order transition between the FF and the LO phases. This can be seen by
comparing F2 and F3 which is equivalent to comparing β2 and β3. If β = 0 and κ < 0 then
0 < β3 < β2 which implies F3 < F2, implying that there is a phase transition between the
FF and the LO phases. For the singlet superconductors considered here, the FF phase should
exhibit a spin current.

A detailed calculation was carried out for an impurity concentration for which Tc/Tc0 =
0.573 (where Tc0 is the transition temperature with no impurities present). Figure 8 shows
the resulting phase diagram calculated within the GL theory. Note that GL theory gives a
reasonable description of the phase diagram in this case because it is valid along the entire
normal-to-superconducting phase transition boundary. For other impurity concentrations
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0.10

0.05

µ B
B

/T
c

1.00.80.60.40.2
T/Tc

LO

FF

uniform

Figure 8. The phase diagram for a d-wave superconductor with Tc suppressed by impurities such
that Tc/Tc0 = 0.573. ‘FF’ refers to an order parameter of the form � = �0eiq·r while ‘LO’ refers
to an order parameter of the form � = �0 cos(q · r).
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the phase diagram is similar. If multiple scattering from the impurities becomes important
(e.g. going beyond the Born approximation to a T -matrix treatment), then it is found that the
region of the phase diagram where the FF phase appears shrinks [26].

5. Conclusions

In conclusion, we have derived the GL free energy for singlet superconductors in the presence
of a Zeeman field and non-magnetic impurities. This free energy was used to examine the
resulting phase diagram. It was shown that the phase diagrams for unconventional super-
conductors and conventional superconductors are qualitatively different in the presence of
impurities. In particular the first-order normal-to-uniform superconductor phase transition
that exists for conventional superconductors does not exist for unconventional superconductors.
Also, for unconventional superconductors, impurities induce a change in the structure of the
FFLO phase. In the clean limit the FFLO phase is described by an order parameter of the form
cos(q · r) (LO) while impurities stabilize an eiq·r (FF) type of order parameter.
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